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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-481

COLLISION INTEGRALS FOR A MODIFIED STOCKMAYER POTENTIAL

By Eugene C. Itean, Alan R. Glueck,
and Roger A. Svehla

SUMMARY

Collision integrals were calculated for the modified Stockmayer

potential E(r) = 4e[(o/r)i% - (a/r)6 - 8(o/r)3], which may be applied
to polar molecules. It was assumed that the colliding molecules main-
tain thelr same relative orientation during the encounter. Calculations
of the integrals were made for a large reduced temperature range and for
a range of ¥ from O to 10. The results agree with other work on non-
polar interactions (& = 0). However, for polar interactions, the only
previously published calculations have been found to be in error and do
not agree with this work.

Assuming that the molecules interact as alined dipoles of maximum
attraction, values for o, €, and & were determined for various polar
molecules by a least squares fit of experimental viscosity data. Satis-
factory results were obtained for slightly polar molecules, but not for
more highly polar molecules such as NHz or HpO. Therefore, it appears

that the assumed model of molecules interacting at all times as alined
dipoles of maximum attraction is not satisfactory for estimating trans-
port properties of polar molecules.

INTRODUCTION

Coefficients of viscosity, thermal conductivity, and diffusion are
needed in heat- and mass-transfer calculations. Equations for calcula-
tion of these transport properiies have been developed from kinetic
theory in terms of collision integrals, quantities that describe the
interaction between colliding molecules. When these integrals are known
it is possible to predict transport properties at elevated temperatures.
Values of these integrals (ref. 1, pp. 1126-1180) have been calculated
assuming various interaction potentials. However, these integrals are
specifically for nonpolar molecules. In many cases a polar gas such as
H,0, NHz, or HCl is of interest, and the predictions would be in error
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if these integrals were used, because the polar character of the jjas is

2"

iinored.

The Lennard-Jones potential of interaction for spherically symmetric
nonpolar molecules (ref. 1, p. 32), given in :gquation (1), is a well-
known potential that has been successfully us:d for correlating transport
properties of many nonpolar gases:

5(r) = 2e|(2) - (8) (1)

where E(r) is the potential energy of intera:ticn, r 1s the inter-
molecular distance between collidins molecules, € the maximum energy of
attraction, and ¢ the value of r where th: potential energy of in-
teraction is zero. For low-veloclty encounters, ¢ can be considered
the collision diameter of the molecule. (All symbols are defined in
appendix A.) These relations are shown in fijzure 1.

For polar moclecules, an
proposed by Stockmayer (ref.
(2) and (3):

C
o
&

quation similar to eguation (1) has been
), civen in a m>dified form in equations

12 €] 2
. |/o g
E(r) = ie (;) - (;)J - i—g 2(81,02,9) (2)
2(69,62,9) = 2 cos 0y cos 8, - sin 8; sin Oy cos @ (3)

Stockmayer actually proposed this equation using an arbitrary exponent

S, instead of 12 as given in equation (2). But written in the preceding
form it can be congidered a Lemmard-Jones potzntial modified to include
the forces between two point dipoles. The ansles 67 and 6p are the
angles of inclination of the dipoles with the intermolecular axis, p 1is
the dipole moment of the molecule, and ¢ 1is the azimuthal angle between
the dipoles. This is shown in figure 2. Howaver, the molecular con-
stants o and € do not have quite the same significance as in equa-
tion (1). They now represent constants that would be obtained from the
interaction of a wpolar and a nonpolar moleculsz.

Define the parameter © as follows:
2

6= _E_%_ 8(9]_;62;(@) (4)
4e0

Using this definition, equation (2

E(r) = 4e (%)1

may be rewritten as follows:

- &

)
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Bguation (5) is the form of the equation that Krieger (ref. 3) used to
obtain collision integrals for polar molecules. In order to simplify
calculations, Krieger suggested letting £(61,65,9) in equation (4) equal

+2, corresponding to alined dipoles of maximum attraction. This assumes
the dipoles have sufficient time to orient before collision. For this
assumption, equation (4) becomes

8= &~ (6)
2e0

For the purpose of calculating the collision integrals using equation
(5), no specific orientation of the colliding molecules need be assumed.
If it is only assumed that the molecules maintain their same relative
orientation during the encounter, then g(@l,ez,m) becomes a constant,

and 1t is possible to assign constant values of & Krieger performed
his calculations for positive & wvalues. Since a wider range of param-
eters was desired, and because of a lack of smoothness of Krieger's re-
sults, collision integrals for positive values of & were recalculated.

The calculation of the integrals requires three integrations. The
first is to obtain the angles of deflection, the second the collision
cross sections, and the third the collision integrals. These three in-
tegrals (ref. 1, pp. 525-527), based on equations given by Chapman and
Cowling (ref. 4), are given in the next section.

The collision integrals evaluated were the 0(272)* 404 the q(1,1)%
integrals. These are the ones used in evaluating first approximations
to the coefficients of viscosity, thermal conductivity, and diffusion of
Pure gases. The significance of the superscripts is indicated in the
following section. Other integrals such as 9(1,2)*, 9(1,3)*, or 9(2;3)*
could be calculated in a similar manner. These are used in higher approx-

imations or for mixtures. But the approximate nature of the potential
assumed does not warrant their use.

The transport property equations for pure gases (ref. 1, pp. 528-
539) are given here for convenience:

7 _ 266.93~/MT
[n1lx107 = ;§5T§?§§;: (7)

D, 1x107 = 0. 0026280~/T2/M (8)
pGZQ(l,l)*




where

D self-diffusion coefficient, cmz/sec
k Boltzmann's constant, ergs/K

M csas molecular weight, g/mole

P pressure, atm

T temperature, K

n viscosity, g/(cm)(sec)

Y collision diameter, angstrom:

* *
Q(l’l) ,Q(ZJZ) collision integrals from table IT evaluated at reduced
temperature, T* = kT/e

No equation is given for thermal conductivity, because, for polyatomic
molecules, the equation is complicated by the interconversion of trans-
lational and internal energy. In polar molecules, additional config-
srational effects are involved (refs. 5 and €).

DERIVATION AND EVALUATION OF COLIISION INTEGRALS
Equations of Motior
The general equations of motion for a tvo-body system in polar co-

ordinates, consisting of two jdentical collicing molecules A and B, and
describing the motion of A relative to B, are¢ as follows:

m o2, _ . :
5 T8 = 5 b (9)
%m(rBéZ + r2) + B(r) = %mgz (10)

where g 1is the relative velocity before th: encounter at r = o,

b 1is the distance of nearest approach in th: absence of any interactions,
m is the mass of each particle, r 1s the i1termolecular separation,

and E(r) is the potential function given in equation (5). These re-
lations are illustrated in figure 3.

If time is eliminated between equations (9) and (10), the resulting
equation is

- P
a6 = dr EE._I EEEELEJ. (l/ ) (ll)

T |2 T nelp?

T6L-H
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.Integrating from r = a to r = », where a is the distance of closest

approach, results in the expression for the angle 6, the angle of 6

for r = o
Op(2,p,8) = f c_l;_'[rz -1 - ﬂﬂ]—(lm) (12)

r|pe mg2b2
a

Since dr/d6 = 0 at T = a, equation (11) becomes

2 2
EE -1 - 4a°E(a) _ 0 (13)
b mgzb2

which determines the lower limit a. Knowing 6, as a function of g

and b, the cross section for transport can be found from the relation
(ref. 1, p. 525)

(¥ (g,8) = 2x fm (1 - cos{?) )b av (14)
0

where 1 1is a positive integer, and
X =% - 26, (15)
as shown in figure 3.

In this work the only cross sections of interest are Q(l)(g) and

Q(Z)(g). Equation (14) then becomes

a1 (g,8) = 2x fm (1 + cos 26,)b db (16a)
0

a(?)(g,5)

il

2n fm (1 - cos® 2@,)b db (16b)
0

From the cross sections, the final collision integrals can be computed
(ref. 1, p. 525) by

o
2
al:s)(z,8) = Y= f e V" y2e+3 (1) (g) ar (17)
0
where s 1is a positive integer, and
2
2 - mg_
T T (18)

The collision integrals calculated were Q(l:l)(T) and 0(2:2)(T).



Introduction of Dimensionless Parameters

As an aid to computation, the variables can be put in dimensionless
form, utilizing the characteristic quantities € and 0 Define the
following dimensionless quantities:

¥ = rfo (19)
¥ = b/o (20)
EX = B(r¥)/e = 4(x*"12 . p%-6 _ grx-3) (21)
Letting
£*2 = mg2/de (22)
T = kT/e (23)

and using the values of Q(l) and 0(3:8) ror 4 rigid sphere (ref. 1,
p. 525)

(2) N M S G L
Qrigid sphere ~ 1 2 1+1 o (24)
T -
aoll,8) - ‘/EM[Q:] . (25)
rigid sphere m 2 rigid sphere
then equations (12), (14), and (17) become in reduced form (ref. 1,
p- 527)
* L * md.r*r*2 1*2R¥ 4/2
8n(e”,D ,8) = | - 1l - - (26)
a* T ¥ ¢ ¥op*e
* a(2) "
Q(?) (% 8) = 4 = 2 =, (1 - cos(2hx)p* qu*
Qll) 11+ (-1)Y]
rigid sphere 1 - = i
2 1+1 1 Jo
- (27)
Q(l;s)

It

*
all,s) (T*,8)
Q(Y:)S)

rigid sphere

2 T (g% %) 42543 *
T (s + 1) / em(87/T7) gx23+3 (1) ¥ (g*)ag*
' 0

(28)

T6L-1
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In particular,

(L)%, = _ * X %
Q (27,8) = 2 (1 + cos 26,)b™ db 29a)
%£~ + B (29a

Q(2) (% 5)

i

3 / (1 - cos? 2g,)b* av* (29b)
0

W

oL L)% (r* g - T%/ e (8%/T%) e a7 (%)ag*  (50a)
0

olZ:2) (1* 5) = - 1*4 / o /) ot o2V (g%)ag*  (300)
3T 0

Integration Technique

Angle of deflection integral. - The angle of deflection integral

is

-1/2

o3 ]
% % dr* fr+2 T *¥2R*
b = Eo(ET g D ETET
Qm(g ’ :6) ‘/; ¥ B2 1 g*zb*g (26)
a,

In order to simplify the numerical integration, the change of variable
p = 1/r™ 1is used in equation (26) to give

A .b-xz 1/2

4
1 - b*2p2 + — (_plz + p6 + &33)
g

6u(g™,0%,8) = dp (31)

0

where A(= 1/a¥) is the smallest positive root of the denominator of
the integrand of equation (31):

= (012 + 0B + 803) - b2 4 1 = 0 (32)
g

Equation (32) has either three or one positive roots (by Descartes'

rule of Signs), so that finding the smallest root proves to be a problem

in some cases. TFigure 4 shows a typical example of this function for

g¥ = 0.5, 8 = 1, and various values of b’.

=3



To find the proper root of equation (52), an iterative procedure
(Uspensky's method, ref. 7) is used with the iaitial estimate A = 1/v%.
This is a good estimate for sufficiently large b*, and also for all
b" < 1, since an examination of equation (32) shows that A 1s greater
than unity for all b* < 1. However, in certain cases where b* is
not much greater than 1, a minimum above the p-axis exists for equa-
tion (32) in the vicinity of the initial estimate p = 1/v* (e.g.,
¥ = 3 in fig. 4). In this situation Uspensky's method does not con-
verge but oscillates about the minimum. This situation can be detected
by the fact that the first derivative beccomes positive during this
oscillation. When this occurs a new estimate of A > 1 is made so that
the first derivative of equation (32) is negative, and the iterative
procedure is continued. This root-finding prccedure has been successful
in all cases attempted in this work.

Once the proper root has been found, the angle of deflection inte-
gral can be evaluated. It should be noted that a pole exists at the
upper limit A. However, it is a half-order pcole if A is a single root,
and can be handled by fitting the function to a polynomial of the form

(ag + a1x + . « - + anxn)/xl/2 = £(x) in the --icinity of the pole. The

remainder of the integral is well behaved and is accurately evaluated
using the Gaussian numerical integration procedure (ref. 8).

Referring to figure 4, it is seen that a double root of equation
(32) is possible (in this example at ¥ = bg, where bg = 3.6). The

integral now no longer has a half-order pole it A, but rather a pole
of order 1, which leads to an integral whose ‘ralue approaches oo Thus,
for values of b* near bé, the molecules or»yit around each other an

indefinite number of times before separating. The occurrence of a
double root is not possible for all values of the parameter g* For

every value of & there exists a value gg(a), such that for all
0<g*s gg there exists a bg(g*,a), where :quation (32) has a double
root, and the phenomenon of "orbiting" occurs. For all g% > gg no

positive value of p¥* exists such that equation (32) has a double root,
and orbiting cannot occur. Values of gg (8) are given in table I.

Cross-section integrals. - The cross-section integrals, equations
(29a) and (29b), can be easlly evaluated for g¥ > g5(8) py dividing
the integral into two parts:

*
(a) O to by

(b) b§ to e

TeL-d
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where for all b¥ > bﬁ, it has been found empirically that fn can be
well approximated by

48

g *Eb *3

op(0%,6%,8) = T + (33)

That is to say, 8, approaches n/2 asymptotically as b¥* - w.

The first region is evaluated numerically using the Gaussian inte-
gration procedure. The second region is evaluated by substituting equa-
tion (33) for 6y, eXpanding cos 26y, in a Maclaurin series, and inte-
grating equations (239) analytically. Dropping all terms after the first
nonvanishing term gives:

> 2
* % 1f 4B B
/ (l + cos 29m)b db” = 5 g—*%?z (5-&8.)
bR R
© 4 2
¢}
* * o =2
f (1 - cos? 2g, )p* ap* = P (340)
b3 °OR
R

When g* < gg(ﬁ), orbiting occurs and the curve @, against b* has a

singularity at bgl For this situation the integral was broken into
five parts as in reference 9 (see fig. 5):

(a) 0 to bﬁ

(b) by to b}

(c) by to by

() by to bR

(e) BB to w

Regions (a) and (d) are evaluated numerically as was done in the
first case. Also, region (e) is evaluated as before by using equations

(34). The regions (b) and (c), which are in the neighborhood of the
singularity at bg, are evaluated by curve-fitting 6, against p*2

by an empirical equation of the form

27

6, = -

m aO + x2 *x2 (35)
bo - b

where ag and aj are constants.
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If this substitution is made for @, in equations (29), the fol-
lowing results are obtained by integrating analytically:

*7
© (1 + cos 26)d(v*?) = (b*2 - *2) 1 + cos 2
- 0

¥

- 2(6y - ag) {(cos 2ag)|si(26y - 2ag) - g] + (sin 2ag)Ci(26y - Zao)}>
(36a)
b*ﬁ %2 i %2
20 (1 - cos? 29)d(b*2) = (9 5 l i (l - cos 48y

b}’z [ ]

.Nl:l'

- 4(6y - aO){?cos 4aq)[Si(46y - dag) - + (sin 4ag)Ci(46y - 4a0)>

(36b)
where
X
six) = [ b
0
and
fo o]
ci(x) = -./[ Cos b 44
t
X
Similar results are obtained for the region ‘rom bgz to ng.
Collision integrals. - The collision integrals are given by equa-

tions (30a) and (30b). The final integratioi that obtains the collision
integral is divided into two parts:

»*

(a) O to 0
* *

(b) €0 to gr

The integral over both parts is evaluated numerically using
Gaussian integration, the only difference being in the manner in which
the cross sections Q 1)¥* are calculated. This has already been dis-
cussed. The integration is terminated at scme g* = g¥ where the in-

tegral from ¥ to o« 1is negligible compared with the total integral.
&R
For all T* <512, g 1s less than 120.

TR.-T
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DISCUSSION OF RESULTS

The results of the calculation of the collision integrals Q(l:l)*

and 9(2’2)* are given in table II. The values extend over a large
reduced temperature range from T* = 0.25 to T* = olZ, and ten values
of & from O to 10. The T¥ intervals were selected for €ase 1in inter-
polation and for comparison with other work.

Results of this paper, Hirschfelder's values (ref. 1), Krieger's
results (ref. 3), and Rowlinson's values (ref. 10) or q(2,2)* for

& = 0 showed agreement. Moreover, Hirschfelder's Q(l’l)* for & =0
agreed with this work. However, for & > 0 the results of Krieger and
this work do not agree. Values of collision integrals more than double
Krieger's values were obtained at low T¥* At high T* +the discrepancy
lessens because the effect of polarity decreases. A study of the
goniometric variable method used by Krieger indicated an error in the
limits of an integration, and that the transformation to goniometric
variables is unfeasible when & 1s greater than zero. Detalls are
gilven in appendix B. The only other work for § greater than zero is
unpublished calculstions by Mason and Monchick, which include negative
values of & as well as positive. Their results agree closely with
the results of this paper.

DETERMINATION OF PARAMETERS

In order to determine the constants o, €/k, and & for various
molecules, Krieger assumed the molecules interacted as point dipoles of
maximum attraction. He then selected two experimental viscosity dats

points for each molecule, and used equations (6) and (7) and his q(2,2)*
table in connection with the experimental data to determine the constants.

His 0(2’2)* table extends over g range of T* from 1 to Sl2 and a
range of & from O to 2 at intervals of 0.25. Of 12 molecules tested,
water had the highest 8, with a value of 2.33. In general the constants
seem reasonable.

The procedure to find the constants using the present 0(2’2)*
table was the same as Krieger's method, except that a least squares fit
of selected experimental viscosity data was used to determine the best
overall constants for a molecule. Table III gives the constants (U,

e/k, 6) obtained using the present 9(2’2)* table and experimental
dipcle moments (u). Table IV gives the experimental viscosities used
to obtain the constants of table III. It alse contains viscosities

caleulated with these constants and 9(2,2)* values of this paper. The
agreement between experimental and calculated data is good. The average
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deviation for all molecules 1s 0.5 percent, the largest average deviation
being 1.2 percent for HoS. The explanation for the relatively large
deviation for HZS is that the experimental deta are not smooth. The
constants, 0 and e/k, are different from trose of nonpolar molecules;

o is larger and e/k is smaller. This beccmes more proncunced with
increasing % values.

No satisfactory results were obtained fcr more highly polar molecules
such as NHz or Ho0 using this least-squares lechnigque. Independent hand
calculations verified the computer results and indicated that extending
the tables to larger values of d would not help. Since the contribu-
tion of the dipole-dipole interaction term to the Stockmayer potential
is small for slightly polar molecules, and becomes important for highly
polar molecules, it appears that assuming g 61,00,0) equals +2 at all
times is inadequate.

However, another possible method for obsaining the constants O,
€, and B would be to treat © as a third parameter, independent of 0
and €. This would mean that no specific relative orientation is as-
sumed during the encounter. Then, knowing tae dipole moment of the
molecule, it would be possible to calculate an effective g(el,ez,@) for
each molecule by equation (4).

Hornig (ref. 11) suggests using a combination of three types of
interactions. Two are for resonant collisicns, where the first has
g(el,eg,@) equal to some positive number between 0 and 2, and the second

is -g(61,62,9). The magnitude of g(8y,02,0) is calculated from a

knowledge of the internal quantum numbers of the molecules. The third
type of interaction is a nonresonant collision where the r-3 term
disappears. Mathematically, this latter inieraction is identical to
the Lennard-Jones equation for the interact:ion of nonpolar molecules.
Therefore, according to Hornig, the effect of the r~9 term on the
potential can be attractive, repulsive, oOr 1onexistent depending upon
the type of interaction between the two molecules.

Using Hornig's approach, an effective g(6q,62,9) for an interaction

could then be calculated as a weighted average of the three types of
interactions, where the weighting factor woald depend upon the frequency
of each type of collision. When collision integrals for negative ©
values become available, it will be possibles to try this approach.

In summary, it is concluded that the sbility to estimate transport
properties of polar gases 1s still in doubt. However, two possible
approaches to the solution of the problem rave been mentioned that may
eventually resolve the situation.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, August 12, 1960

TR/ =W
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APPENDIX A

SYMBOLS

l/a*

distance of closest approach of colliding molecules

constants in empirical equation (35) for curve-fitting
6n agalinst p*2

a/O

distance of closest approach of colliding molecules in
gbsence of any interactions

b/

*
lower 1limit for analytic integration of Q(z) integrals
in vicinity of orbiting

upper limit for analytic integration of Q(Z)* integrals
in vicinity of orbiting

numerical integration 1limit for Q(z)* integrals

value of b* for which orbiting occurs

cos t
h J/rw 5 4t
p:e

first approximation to coefficlent of diffusion

interaction potential

E(r*)/e

relative veloecity between molecules at infinite separation
before colliding

(mg2/4£)1/2
numerical integration 1limit for Q(lls)* integrals

val&e of g* such that orbiting does not occur for all
g > gy
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Boltzmann's constant
molecular weight
molecular mass
pressure

collision cross section

Q(l)/Q(l)

rizid sphere

intermolecular separation between colliding molecules
r/o

sin t
S == as

0

temperature

kT/e

(mg2/4kT)l/2

parameter in modified Stockmayer potential

maximum energy of attraction betreen colliding molecules
in absence of dipole forces

first approximation to coefficient of viscosity

= (x - %)

angle 6 at infinite separation of colliding molecules

angles describing relative oriensation of two point
dipoles

first derivative of 8 with resoect to time
dipole moment
l/r*

collision diameter

angle of deflection in bimeclecular collision

TeL-d
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a(t:5) (1, 5)

a(be)X(1%,5) a(1:2)ja(l,

S
1

collision integral

g sphere

15



16

APPENDIX B

INVALIDITY IN THE TRANSFORMATION TO GONIOMETRIC VARIABLES

In reference 3, the following statement is made on page 18: "The
value of b* = 0 (central collision), for which 2/a™® =1 + (1 + g*2)1/2,
corresponds to the value B = 0." It can be shown that this is a true .
statement if, and only 1f, & = 0. 'To accomplish this, equations (26), 1
(29), and (30) from reference 3, corresponding here to equations (Bl), @
(B2), and (B3), respectively, are used: -
2
¥ 4 - i
R I
g
g¥ = cot T (P <r = %) (B2)
%-6 _ cos B < <N
2a%°6 = 1 + == (0Sp=Z+7) (B3)

where equations (B2) and (B3) are the defining equations for the trans-
formation to the goniometric variables B and Y.

If b* = 0 (the lower limit of the cross-section integrals), equa-
tion (Bl) becomes

7*2
a*-lZ - a*-6 _ ba*-S = T (B4:)

Let a* be the one positive real root of this equation. Then from
equation (B3) the B corresponding to ¥ =0 1is

B = arc cos [(23.3'6 - l)sin T]

B = arc cos EZag-B - ;L)/(g*:Z + 1)1/2] (B5)

since sin T = (g*% + l)‘l/2 from equation (E2).

or

If & = 0, equation (B4) becomes

*2 s
a*—lz - a-)(--6 = %_ (BG)
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The solution of this equation leads to the result

ax-6 L 1 (1 + gx2)l/2
= 2

and, since afd 1is positive,
2086 = 1+ (1 4 gx2)1/2 (B7)
If this guantity is substituted in equation (BS), the result is
B = arc cos 1
or
Bp=20
When & =0, B=0 corresponding to ¥ = 0.

Next, assume B = 0. Then from equation (Bs),
(2a3‘6 - 1)/(g*2 + l)l/2 =1

Solving for aS“B and substituting in equation (B4) give

(g% + 1)1/2 4 1 ? _ (g%« 1)1/2 4y (g2 + 1)1/2 4 1 1z g*2
2 2 -5 2 '4=O

(B8)

which, after combining like terms, results in

5[?%*2 + l%l/2 + {]1/2 =0 (B9)

This implies either & =0 or (g*2 + 1)1/2 1 1 = 0. Since the latter
quantity is never zero for all real g*, & = 0. Thus 1t has been shown
that B = 0 corresponds to b* = 0 if, and only if, 8= 0. In ref-
erence 3 B =0 is used for the lower limit of the cross-section inte-
gral for all &. This is therefore incorrect.

However, even 1f the correct lower limit (eq. (B5)) for B had
been used, the transformation to B (eq. (B3)) does not always lead to
a real value for correspending te b” = 0. An example will suffice
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to illustrate this fact. Take & =1 and g = 3/40 and calculate .

Substituting in these values for g* and © and letting axd = c,
equation (B4) becomes

ct -2 -c-10=0 (B10)

The solution of equation (B10) for the one real, positive root is
C = 2. Therefore, 202 = 25%-6 = 8. Substituting this value in equa-
tion (BS) leads to the result

7
VI
Thus in this particular example, no real B corresponds to b* = 0.

Therefore, the transformation to the goniometric variable B Dby equa-
tion (B3) is not valid for B # O.

B = arc cos
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TABLE I. - VALUES OF ggz(a)

5 85E(8)
0 0. 80000

.25 1.02738

.5 1. 26188
1.0 1. 75000
1.5 2. 26093
2.0 2. 79221
2.5 3.34197
3.0 3. 90874
3.5 4. 49133
4.0 5.08872
4.5 5. 70007
5.0 6. 32464
7.5 9. 62567
10.0 13. 18494

21
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“ABLE II. - COLLISION INTEGHALS
(:’i) 9(1)1)*
T (1 o 5 or -
.0 oo | oo.ne | o1.00 | 1.5C 2.00 3,50 &.00 7,50 10,00
oLes | 2. % o027 | . loe7 | 9.3640 | 12,2034 14,9065 | 21.0997 | 27.9376 | 56.u864 | 44,1951
a0 | 2. S ael Ul5pus | 82948 | 10,5255 | 15.1617( 18.3386 | 24,7008 | 32.4749 | 592127
55 | 2. ol Diog1a | 714507 | 9.7b1s | 11.8455 | 17.4041 ) 22.2455 | 29,3180 | 854827
a0 | 2. Yavie| a.6388 | 6.0599 | 5.9092 15 5107 | 15.6600 | 20.3103 | 26.8004 | 32.5157
45| 2. Y axoo| 45060 | 8.3485 | 8.2286 § 5775 | 14,6503 | 18.7403 | 24.7512 | 30.0775%
.50 ] 2. 4. 6.9251 | T.6050 9.2850 | 13.0282 | 1 5.0447 | 26,034
55 1 1. 3.7 S.BEls | 7.1489 07025 | 12.7646 | 15,3 01,5987 | 20,29
o1, 3. L.2a9l | ©.7801 4 2025 | 12,0237 | 16,5052 | 20,5000 :
on | 1. 3. 1.9751 | ©.4241 7 78ur | 11,3801 | 14.5¢ G.27L4
ot 3. 407321 | £.1103 2 laBgs | 10.8149 | 13,8427 | 18,5217
o, 2.9500 5.5795 6.7449 | 9.8666| 12.6277 | 16.7215 | 20.3933
a0 1. 2.717 5.1452 & ooz | 9.0998 | 11.5443 | 15.4241 | 18.8182
: Jo‘ 1. 5 eps7 | 50875 | 4.7801 £ 7878 | B.4648 | 10.8292 | 14.: L5102
1.201 1. 52177 | 5.2261 | 4.195% 0851 | 7.4687 5 12,650 4537
1.40‘ 1. 1 5893 | 2.8730 | 3.7444 1.5621 | 8.7161 11,54 9012
0 1. 1 2.5948 | 3.3841 41350 | 6.1215 | 7.5542 | 10.3804 | 12.6810
: 1 . 1. 5 4702 | 3.0894 3 7838 | 5.6556 | 7.2225 | 9.5703 | 11.6927
00 | 1.0 1. 2.1861 0 2.u8441 Y4890 | 5.o281 | 6.7146 | 8.8995 | 10.8733
oo | 1. 1. 50829 | 2.8372 22376 | 4.6796 | 6.2838 | 8.3329 | 10.1812
a ]‘ 1. 19038 | 2.45808 Zoo1a| 4.5789 | s.91is | 7.Eav2 | 9.5877
o 1.2 1,795 | 2.7084 o.8334 | 4., G .oap3 | 7.4251 | w.0728
‘l 9 1. 14293 | 2.1762 o.6684 | 4.0 5.2980 | 7.0L40 | 8.6197
1. 1.5173| 2.0805 2.5229| 5. 50407 | 6.7245 | »n.2186
1 1 104537 1.8266 2.2051° 5. 4.4985 | 6.0386 | 7.3883
| 1. 13322 1.6503 1.9970 . 4.0846 | 5.4947 | £.7358
1 1.2388 | 1.5135 | w177 2.785n | 3.7076 | 5.0488 | F.2054
1.7654 | 1.404% L8738 2.5507 | 3.4083 | 4.A736 | 5.7833
1.1080 | 1.3169 1les6s  2.3542 | 3.1537 | 4.3524 | 5.3
1.0572 | 1.2443 1lines o.1878| 2.9345 | 4.0734 1 5.
geis | 1.1720 1207 1.9005| 2.5778 | 3.6107 ) 4
L3313 | .9264| 1.0S01 L1985 1.7218 | 2.3004 | 3.2419 | 4.0d82
3050 | L8839 19876 171118 1.ea857 | 2.0799 | 2.9409 | 5.731%
7hae | L8502 L9384 1 0sz8  1.4415| 1.9012 | 2.8309 | 2.42323
7g58 | 8228 .8989 ‘5912  1.2408 | 1.7541 | 2.4805 | 3.1768
2006 | L8000 5663 ‘9473 1.2578 | 1.8313 | 2.3013 | 2.9582
|
| L7367 7784 8301 | 1.0358 | 1.2964 | 1.7940 | 2.3130
6973 L7260 L7622 5091 | 1.1014 | 1.4847 | 1.9039
L6896 ~5907 17174 8279 ‘9759 | 1.2802 | 1.6250
8317 L5445 ~6509 7303 Tees2 | 1.0317 | 1.2783
.60589 5145 L6256 6734 .7409 8894 | 1.0720
arse | 5824 5660 L5955 6282 6751 7608 9144
5556 | L5585 .5818 L5666 5879 6149 6504 7830
5260 | L5381 .5401 .5433 5576 15747 5283 6939
5173 | .5188 L5198 15219 5315 15458 5799 6257
973 | .a%83 .4988 .5001 5061 5183 5376 5681
200.00 o720 | .4830] .4630| .4635 L4635 .4840 4666 4706 L4807 4949
506,00 | 4450 | .4450| .4450 1 .4453 .4453 L4456 L4471 L4496 L4560 4651
So0 00} L4358 | .4ss| L4358 .4340 L4239 .4341 4353 .4370 4418 4487
106 06 | L4142 | L4141 .4141 ] .4l42 L4141 L4142 4149 S41s8 4185 L4225
1200 | .zeuo | .z979| 3979 .3979 13973 -3978 3883 L3986 4004 .4029
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TABLE II. - Concluded. COLLISION INTRGHALS
(b) 9(2:2)¥

—
a(2,2)%

for & of -

L0254

11.42580 15,7547 19,5444

|

5.0203 | 4.5079 |
2.5413 | 4.1279 | 5.4332 10.1493 | 12,2037 [17.5907
2.6774 | 3.8359 | 4.9897 | 9.1854 | 11.0525 |15.8858 51,5088
2.5319 | 5.5980 | 4.6414 B.4282 1 10.1110 |14.5448 29.1n52‘
2.4015 | 3.3962 | 4.3573 ] 7.8156 9.3642 13,4589 ’25.95&9
| 2.2843 | 3.2201 | 4.1140 15.7731 | 7.3088 8.7448 12,5538 25,1212 |
$55 12,1789 | 5.06351 3.9112 | 5.4559  £.8522 | u.0018 11.7898 23,5714
-6012.0842 | 2.9028 | 2.7290 | 5.1842 | g.5177 7.7732 [11.1787 z 22.2428’
85| 1.9989 | 2.7952 | 3.5059 | 4.9478 | 5.2024 | 7.344x 10.3632 113.5390 | 17.4279 | 21.08m1
.701 1.9222 | 2.6790 | 3.4184 | 4.7392 | 59285 7.0436 | 9.4891 |12.7018 ] 16.5920 ’20.0737
|
801 1.7904 | 2.4755 | 3.1594 J4.384§ 5.4851 £.4741 | 9.2260 |11.8303 | 15.1u68 ‘1&.5&92
.30 ‘1.6824 2.3032 | 2,9396 ‘4.0&97 | 5.0918 £.0161 | 8.5287 10,7611} 14.0489 | 16.9875
1.001 1.5930 | 2.1568 | 2.7495 | 3.8375 . 4.7803 5.6381 [ 7.9605 110.0393 | 13.100% | 15.8405
1.20 | 1l4550 1.9232 1 2.4586 | 3.4035 | 4.02811 | 5.0148 | 7.0715 8.9038 | 11.6124 14.0572‘
1.40 11.3552[ 1.7476 | 2.1971 | 5.0928 | 3.3894 | 4.5818 | £.4056 | £.0465 | 10.4876 12.5747 |
1.60 | 1.2601 l.e8l2s | 20061 | 2.ec18 | 3.5879 4.2269 | 5.8870 | 7.3738, 9.6021 | 11.5006 |
1.80 [;.2220[ 1.5054J 1.6525 [ 2.5956 | 3.2984 2.8217 | 5.4892 | 5.8309 | 8.3834 10.7528’
2.00 1 1.1758 11,4214 1.7274 | 2.4051 | 3.0043 3.6602 | 5.1230 | 6.3829| &.2872 ' 10.0105
2.20 \1.1382[ 1.5521[ 1.6241 | 2.2431 | 2.ap27 | 2.4220 | 4.8289  6.0063| 7.7809 91
2.40‘ 1.1071 | 1.2949 | 1.5378 |2.1042 | 2.6883 | 3.2308 | 4.5733 5.5845| 7.3508 | 8
‘ ‘ \ i
2.60 | 1.0808 | 1.2486 | 1.4548 | 1.9843 | 2.5310 5.0518 | 4.5491 | £.4028| ¢.a7s4
2-8011.0585 | 1.2081 | 1.4028 | 1.8801 | 2.3955 | 2.8915 | 4.1482 | 5.1805 6.6457’
| :
5.00711.0388 1 1.1711 ] 1.3491 | 1.7883 | 2.2719 | 2.7473 | 3.9887 | 4.9427 ) 6.3560
5.50 1 .9997 [ 1.1021 | 1.2435 JI.BOS4 2.0203 2.4429 | 3.5984 | 4.4888 | 5.7573%
4.00‘ 9699 1.0514J 1.1860 [ 1.4880 | 1.8265 ' 2.2039 | 2.259¢ | 4.1200, &5.2801
4.50 1 .9463 11,0124 1.1071 | 1.3823 | 1.5739 J 2.0108 | 2.9921 | 3.8137 . 4.912%
5.00 | .9268 .9815[ 1.0609 | 1.2790 | 1.s518 1.8533 | 2.7545 J 3.5514 1 4.5974
5.50 | .9104 | .9562| 1.,0237 | 1.21p L4523 .723 5687 .4 .3285
2 120 | 1.452 1.7230 ‘ 2.568 5.5229 | 4.3285%
6.00 | .8962 | .9352| .9931 |1.1572 | 1.3701 1.6141 | 2.3991 | 3.1215( 4.0940
7'OOJ .8728[ .9017] .94s8 1.0731i 1.2433 1.4436 | 2.1214 2.7524’ 3.700z 4
5.00 | -8538 | 87601 .9103 {1.0120 | 1.1507 1.3174 | 1.3054 ’ 2.5084 | 3z.3782 |4 0795’
9.00 | .8380 | .8554| .8829 | .9856 | 1.0808 1.2213 1 1.7341 | 2.2835| z.1072 | = 7794‘
10.00 | .8244 836831 .8607 | .9292 { 1.0259 | 1.1460 | 1.5962 | 2.0885 | 5. 8745 5.5233
11.00 | .8125 | .82 .8423 | 8998 .9822 1.0858 | 1.4832 | 1.8395| 2.p744 3.3004 |
12.00 | .8019 | .s112| .8287 .87561 .9468 ‘ 1.0366 H 1.3898 | 1.8064 | 2.4989 | 3 1037‘
15.00[ .7684! 7730 .7814 | .8094 [ .8517 [ 9075 | 1.1387 | 14352 | 1.9791 2.5011 |
20.00 | .7438 | 7481 .7511 .7688 | .7966 -8339 | 19959 | 1.2149| 1.6453 | 2.0901
24.00 | .7241 5 7285 | L7403 1 .7598 7863 ( .9055 | 1.0729| 1.4185 | 1.7885
32.00 | .6942 ’ .6957 | 7012 !  .7123 7274 ’ .7988 ‘ .9046[ 1.1384 [ 1.4150
40.00 | .8717 L6719 | L6738 ' .6816 6911 . 7380 81031 .9774 1.1856’
50.00 | .5498 5493 | .6484 ‘ .6545 .6603 ’ .6905 .7389 .855¢4 1.0073‘
64.00 | .6262 .8253 | .6223 .6275 .6207 .6486 .6730 . 7553 8590 |
80.00 | .8054 .6043 | 8007 .6049 .6086 .6175 .8370 .8879 L7598
100,00 | ,5851 .5840 | .5805 .5837 .5845 .5907 6030 .BEG2 .8848‘
128.00 | .5633 -5623 | 5595 | 5614 .5616 .5646 L5717 L5919 6227
200.0C | .5258 .5247 | 5232 .5236 .5233 .5231 | .s257 .5332 ’ .545 )
256.00 | .5056 .5048 | .5038 ‘ .5037 .5033 .5023 .5038 .5078 | 5152
300.00 | .4931 .4924 | 4915 .4913 .4909 .4895 . 4307 .4932
400.00 | .4710 4705 | 4699 .4696 4692 | 4677 . 4682 . 4690
512,00 | .4528 .4523 .4519’ .4516 f . 4500
I

.4512 ’ . 4499 . 4500




TABLE III. - FORCE CONSTANTS FOR POLAR MOLECULES

Molecule o e/x s} {, Debyes
(ref. 12)
co 3. 668 93.8 }0.01( 0.112
NO 3.469 |120.0 . 01€ .15
HI 4.264 |252.5 . 035 . 42
CHClz 5.513 | 256.7 . 086 1.013
cos 4.396 |209.3 .10 .70
HBr 3.858 16l.2 .251 .80
CHzOCHz 4.796 |123.1 . 450 1.30
CHxClo 5.323 |121.3 . 488 1.57
HoS 4.034 88. 4 .52? .92
CoH50H 5.296 47.8 |1.4%6 1.69
HC1 4.164 23.6 |2.477 1.079
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£(p)
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Figure 4. - The function

= (4/e*%)(-ptF + 0% 4 50°) - b*%p

g* = 0.5, 5= 1, and various values of Dd*.
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